If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12n^2+68n+80=0
a = 12; b = 68; c = +80;
Δ = b2-4ac
Δ = 682-4·12·80
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(68)-28}{2*12}=\frac{-96}{24} =-4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(68)+28}{2*12}=\frac{-40}{24} =-1+2/3 $
| (5x+87)+(12x+42)=180 | | 6+8n=7+4n | | 35*3+x=236 | | 3z+80=80 | | y÷10=8 | | 4n-9=13-6n | | 4p=-40 | | 2.50x+30=45 | | (x)(2x)-(x^2+81)(1)=0 | | 30x+2.50=45 | | -6=3+w/4 | | 6(x+1=4x | | 21x-12=10x+9 | | w+(−2.8)=4.3 | | 6(x+1$=4x | | 5x+23=17x-41 | | 8x+31.7=19.5 | | 3-6x=7x-1*3 | | 4(3x+2)=7 | | 3(x-4)+6=(x-1)+1 | | 13/6x=5/6 | | 13/6x=5/5 | | 10x+38=180 | | 5(x-1)(3x+4)=0 | | x*2=7x-1 | | 9^7x=27 | | X^2-16x-18=0 | | 4x+3x+6=10 | | 4x+2(x-3)=2(x-2)+3x | | X^2+y^2-5y=6 | | 7t–5=2 | | (3x-2)(2x+1)=6x^2-x-5 |